
Academy of Fine Arts and Design in Bratislava

Department of Visual Communication
Studio Typo

Assoc. Prof. Pavol Bálik ArtD.
Assoc. Prof. Zdenko Kolesár, PhD.

Bratislava 2025

fontanalyzer.app

RESEARCH AND ANALYTICAL TOOLS FOR TYPE DESIGN
ING. JAN CHARVÁT

CONTENTS

1. INTRODUCTION	 11

1.1. CURRENT STATE	 11

1.2. GOALS	 13

1.2.1. PRIMARY OBJECTIVES	 13

1.2.2. METHODS	 14

2. PRELIMINARIES 	 15

2.1. RESEARCH	 15

2.1.1. BOOKS	 15

2.2. QUESTIONNAIRE	 17

2.2.1. CONTENTS	 18

2.2.2. RESULTS	 21

3. APPLICATION	 24

3.1. REQUIREMENTS 	 24

3.2. INTERNAL STRUCTURE	 27

3.3. FILE STRUCTURE	 28

3.4. DATABASE STRUCTURE	 28

3.5. ANALYSIS	 29

3.5.1. CREATION OF ANALYSIS	 29

3.5.2. PHASES (ROUTINES)	 30

3.5.2.1. META	 30

3.5.2.2. CHARSET	 35

3.5.2.3. LANGUAGES	 35

3.5.2.4. GLYPHS	 36

3.5.2.5. METRICS	 36

3.5.2.6. KERNING	 37

3.5.2.7. OT FEATURES	 38

3.5.2.8. FAMILY TESTING	 38

3.5.3. RESULTS	 39

3.5.3.1. ASSIGNING ERRORS AND WARNINGS TO FONT DATA	 40

3.5.3.2. STRUCTURE OF THE RESULT DATA	 40

4. DESIGN	 41

4.1. ONE ENDLESS PAGE	 41

4.1.1. TABLET LIKE ROUTINES	 46

4.1.2. DESIGN OF EACH ROUTINE SUBPAGE	 50

4.1.3. DESIGN OF EACH FAMILY MAIN PAGE AND EACH FAMILY ROUTINE SUBPAGE	 51

4.1.4. DESIGN OF HOMEPAGE / UPLOAD PAGE	 52

4.2. FONT	 52

4.3. VISUAL STYLE	 53

4.4. LOGO	 53

4.4.1. LOGOTYPE	 53

4.4.2. FONT	 54

4.4.3. COLORS	 54

4.5. INSTAGRAM ACCOUNT	 54

5. FONT QUALITY	 57

5.1. WHAT IS QUALITY?	 57

5.2. CRITERIA TO FONT QUALITY	 57

5.3. ERRORS AND WARNINGS AND INFORMATION MESSAGES	 59

5.4. CHECK LIST	 60

6. IMPLEMENTATION	 65

6.1. LOCAL DEVELOPMENT	 65

6.2. PRODUCTION SERVER	 65

6.3. READING AND TESTING FONTS	 66

6.4. LOGGING	 69

6.5. SPEED	 69

7. CONCLUSION	 70

8. APPENDIX	 71

8.1. ABBREVIATIONS	 71

8.2. BIBLIOGRAPHY	 71

ACKNOWLEDGMENTS

This thesis would never see a daylight without many people that supported this
project from the very beginning. My gratitude goes to:

Pavol Bálik for offering the very possibility of starting the project on AFAD, for
all the support through the study and development process, for being the stable
pillar the whole time.

Zdenko Kolesár for helping me during all 4 years to gain perspective and for all
the reviews and comments on the project.

Filip Blažek for mediating first contact and for honest reviews that helped push
this application further.

Domen Fras for changing my life path towards type design and education.

My fellow font engineers and type designers – Norbert Krausz, Bernd Volmer,
Jiří Beran, Marek Čuban and Zuzana Konečná for testing, discussions and for
keeping me on track.

My wife Zuzana Charvátová for everlasting support that is beyond imaginable.

Friends and family for their support and encouragement throughout the journey.

ABSTRACT

This thesis explores the work processes of Font Engineers (FEs)—the profession-
als responsible for the technical production of fonts. It aims to uncover the fun-
damental principles of their work, compile a clear and comprehensive checklist
of common tasks performed by FEs, and develop an open-source tool offering
essential tests that are freely accessible to everyone.

The first part focuses on research, drawing from existing literature and insights
gathered from current FEs through an on-line questionnaire. The findings
identify common production stages and the tests necessary to ensure technical
quality of fonts.

Based on these results, the thesis proposes the design of an on-line application
to deliver this functionality to a wide audience. The application will prioritize
usability and adhere to established design principles, serving a diverse user base
that includes students, designers, and, primarily, engineers.

The goal is not to create a complete replacement for FE work but rather to devel-
op a tool that reduces the repetitive aspects of the job, making it less tedious for
current professionals and more accessible to newcomers in the type design field.

KEYWORDS

fonts, font production, font engineer, quality assurance, web application, meta-
data, character set, language support, metrics, kerning, OpenType features,
font family

11

1. INTRODUCTION

I have been working as a Font Engineer (FE) for approximately 10 years, and it’s
astonishing to see the sheer volume of repetitive tasks involved in our field, the
inherent chaos in our workflow, and the formidable challenges faced by new-
comers in the year 2023. Documentation is severely lacking, and many designers
rely solely on the capabilities and standards defined by software developers.
Up-to-date books addressing font engineering are nonexistent. For newcomers,
the only viable approach is to learn from more experienced mentors within the
field, with knowledge being passed down from person to person like ancient
tales.

I am determined to address this situation through my PhD thesis, conducting
research in the field of Font Engineering that will ultimately lead to the devel-
opment of a new free automated engineering tool. This tool aims to assist Font
Engineers, type designers, and beginners alike in producing higher-quality
fonts. Furthermore, the creation of comprehensive documentation in this thesis
and in the tool will make font engineering more accessible to a wider audience,
ultimately benefiting everyone involved in the craft.

1.1. CURRENT STATE

The role of a Font Engineer is a highly specialized job title primarily focused on
transforming already drawn typefaces into fully functional digital font files.
“Already drawn” implies that the digitalization or creation of each glyph outline
has been executed by someone else or, in some cases, by the same person respon-
sible for producing the font. The Font Engineer typically lacks the authority to
assess or modify the glyph outline unless explicitly requested or permitted to do
so. Instead, the engineer’s primary responsibility lies in configuring the font’s
metadata in a manner that ensures seamless compatibility with a wide range
of applications and environments. This intricate process comprises numerous
steps, each often following unique, individualized procedures. Unfortunately,
these steps are neither systematically organized, adequately explained, nor pub-
licly documented. As I will elaborate on later, every individual in this field tends
to have their own distinct approach to the process.

The good news is that anyone with a computer can now create a digital font with-
out any significant constraints. This accessibility has been the norm for nearly
40 years and has brought about significant changes in the industry. It’s worth
noting that this democratization of font creation means there are no restrictions
related to licensing, hardware, or financial resources. Whether you prefer capa-
ble paid software or free programs with similar functionalities, you can use them
on your preferred mainstream operating system.

This democratization has introduced a wealth of fresh ideas to the field, fostering
amateurism in both the ideological and technical aspects of the process. Long-es-
tablished procedures that have been known for centuries have been challenged
since the public release of type design software, marking an inevitable part of
the field’s evolution. However, with this newfound freedom comes responsibility,
and not everyone possesses the necessary education to handle it. This is one of
the reasons why software like the one proposed in this PhD thesis is so necessary.

12

To put things into perspective, the largest font platform, MyFonts, currently
boasts a library over 300,000 fonts (02/2025), and there could be an additional
100,000 available in other libraries, whether independent or open-source. This
results in at least 400,000 fonts released into the wild. However, it’s essential to
ask how many of these fonts are technically up to date and error-free. Even with-
in Google Fonts, despite relatively stringent entry requirements, many fonts pose
usability challenges due to technical errors or oversights by their creators.

The early years of digital type design software were primarily focused on achiev-
ing the same level of quality output as their metal or photographic predecessors.
The first digital fonts emerged in the 1970s and 1980s, and by the mid-1990s, the
OpenType format became the industry standard. The most recent iteration,
OpenType 1.9.1 from May 2024, defines the current state of technology in type de-
sign. This format is comprised of tables containing font data and metadata, with
two flavors of font files, both adhering to the OpenType standard, but differing
in outline construction and a few other tables. Modern software is capable of
producing both formats seamlessly.

However, the real challenge lies in the human factor. While software can techni-
cally produce fonts without errors, it doesn’t guarantee that these fonts will meet
users’ expectations. There are elements that software cannot judge, and only hu-
man intervention can address them. Like any production process, there should
be quality control for font output. Some aspects are handled by font production
software, but not comprehensively. Although there are many scripts, tools, and
websites available to check fonts, there is no comprehensive list outlining what
to check, what not to check, how to check, and what constitutes correct values or
renderings. Often, these assessments come down to personal feelings, which may
seem unusual in a fairly technical industry.

The best-known checking tool to date is Font Bakery, which was initiated in 2013
as an on-boarding process for Google Fonts and has been maintained by numer-
ous contributors from foundries worldwide. Unfortunately, it is primarily avail-
able through the command line, limiting its accessibility to many type designers
who may not be familiar with command-line usage or programming. Also, the
input and output are only text based, thus not very visual. Every uneven line you
must manually search for in the design software and decide if the issue is rele-
vant or not. These limitations led to the concept of creating a new visual, highly
user-friendly tool without such prerequisites.

I believe having tool that is available for everybody, free for use, with testing
capabilities, easy to use, will help produce better fonts overall. Many of the
designers would like to take more care but at the moment they just don’t know
how. I’ve discovered the workflows and tools only being employed at biggest font
production company ever. Without that I would hardly know any, and I may even
not know I need some.

1.2. GOALS

1.2.1. Primary objectives

Primary goal of this thesis is to gather elemental information about Font Engi-
neering and together with my experience create free, easy to use testing envi-
ronment.

13

In First phase I will try to accommodate as much information about the process
as possible. There are few sources that I want to try dig into:

 ▶ OpenType specification has on-line documentation, which defines every field
used in font file, gives it meaning and intended usage.

 ▶ Other open-source testing tools can lead me to new tests or processes.

 ▶ Questionnaire, where I ask other font producers (engineers, designers, quali-
ty assurance) about their processes.

 ▶ There are two books Karow, P. (reprint 2011, original 1994), Font Technology
and Haralambous, Y., & Horne, S. P. (2007) – Fonts & Encodings: From Ad-
vanced Typography to Unicode and Everything in Between – both can give mi
some insight to font background and testing procedures used in their times.

 ▶ Own experience is my last source. I will try to avoid this option as much as
possible, because the result should be based on some exact scientific princi-
ples and not personal opinions and favorites.

Next, I aim to compile a comprehensive list of essential phases that must be un-
dertaken for each font under examination. Each phase will necessitate a specific
collection of tests. During this phase, my objective is to maximize the depth
of research by cataloging every conceivable test, even those for which I may
not possess the immediate capacity to develop code, whether due to time con-
straints or knowledge limitations. It is important to emphasize that this encom-
passing approach extends not only to individual fonts but also to font families,
typically comprising two or more fonts. Consequently, I must document tests
tailored to both individual fonts and font families.

From my Font Engineering practice I got to know there are few different perso-
nas in the type industry with different knowledge and approach and there is not
a single language you can talk to them. Therefore this application must be able
to differentiate the to different types of users. You simply can not show students
all the tables in the font, that would distract them if not discourage them from
using the app ever again. For more advanced users the app should not oversim-
plify the results for the same reasons.

As this research progresses, critical decisions must be made regarding the
framework’s deployment strategy and the selection of a programming language
for code development. While I appreciate the reasoning behind the com-
mand-line design of Font Bakery, my goal is to bring the framework closer to
end-users. Font Bakery primarily serves as an integral component of the font
on-boarding process, rather than a tool intended for broad public utilization.
Therefore, my aspiration is to ensure universal accessibility, accommodating
users with diverse operating systems, by providing an on-line tool accessible
through standard computers equipped with web browsers and Internet connec-
tivity. Moreover, the framework will adopt an open-source ethos, facilitating
ongoing collaboration, code improvement, and functionality expansion. The
core features of the tool will remain freely accessible, with a strong emphasis on
user experience (UX) and adherence to principles of usability. Rigorous testing
will be conducted using actual fonts and real users to validate its practicality
and effectiveness.

14

1.2.2. Methods

To gather pertinent information regarding font testing, I employed several
methods. As previously discussed, the challenge lies in the scarcity of up-to-date
sources that offer a comprehensive view of font testing. However, this scarcity
of resources underscores the significance of the work being undertaken.

15

2. PRELIMINARIES

2.1. RESEARCH

2.1.1. Books

Initially, my efforts were directed towards gathering books on the subject mat-
ter. Regrettably, I discovered the absence of dedicated books specifically focused
on Font Engineering or Font Testing Quality Assurance (QA). Nevertheless,
there are two books that delve into the technical aspects of fonts.

The older of the two, “Font Technolo-
gy: Methods and Tools” by Karow, P.
(reprint 2012, original 1994), has proven
to be an invaluable resource. This book
aids in the elucidation of historical pro-
cesses within type design, particularly
during the era of hot metal type, indus-
trialization, and photo typesetting. In
those bygone days, type design involved
the physical creation of numerous
metal objects to facilitate the setting of
lines of text or the production of books.
Remarkably, some of the principles
established during that era continue to
influence contemporary font technol-
ogy. The book also offers insights into
the early stages of digitalization and
the development of tools that served as
precursors to the digital technology we
employ today.

Within the pages of this book, one can
find a definition of the current topol-
ogy of font curves and the underlying
principles used to describe such shapes.
In retrospect, the decision to adopt Bézier curves as a resolution for font curves
appears to have been a prudent choice, as this technology remains relevant to
this day. While it’s acknowledged that some designers now find Bézier curves
limiting, these individuals are often pushing the boundaries of technology. It’s
conceivable that in the coming years, a new method for describing curves may
emerge to cater to their evolving needs.

As I delve deeper into the book’s content, I am struck by the fact that pioneers
of that era grappled with many of the same challenges we continue to face to-
day. While some of these challenges have been surmounted through the estab-
lishment of higher standards, others persist as ongoing hurdles in our field,
prompting us to explore innovative solutions and advancements in font tech-
nology. Kerning is one example of them. Kerning means that you have a pair of
letter-forms, let’s say A and V that to be set properly next to each other, their

Book cover of Karow, P. (2011). Font Technology:
Methods and Tools

16

squares need to overlap each
other. That bothers people from
early type design days. In this
book there is a description of an
algorithm that could solve the
problem, but it is never a perfect
solution. Till today there are
like dozen of algorithms trying
to achieve the perfect balance of
blacks and whites in the process
of font development, but none
of them achieved superiority.
Today technology of big data
could come handy using thou-
sands of fonts having “correct”
or “human proved” kerning pairs
and distill the values for new font from few settings put in that algorithm.
Of course that does not solve the problem with new shapes, or new scripts or
alphabets, it only solves the problem with current settings we use and have
enough examples.

One of the most interesting parts of this book at least for my future PhD. work
seems to be the 11th chapter called Type Quality. It discusses quality from
many perspectives. Design or form is the first and obvious one. There are many
type design principles proven by time, by the way human vision works or by
general design principles. Are straight lines really straight? Is on-curve points
distribution well? Are they in extremes? Is the balance of off-curve points
well made? Are Metrics consistent? Are kerning classes senseful? Are there
basic kerning pairs introduced? Are there OpenType features? Are all glyphs
accessible by feature or by Unicode? Does the baseline position the text in the
middle of a text line? “Our discussion will reveal that the craftsmanship of a
typeface can be defined and specified, and thus also measured.”1 But none of
them assure you as a designer, that the font you design is good quality font and
it will be well sold. In the end of the chapter this publication goes even to eval-
uating these qualities and give each criterion its weight adding to 100.

Another compelling subject covered in this book is legibility. The author draws
upon a wealth of older and more recent studies, providing valuable insights
that address key questions for designers. Some of these findings include:

 ▶ Research by Paterson and Tinker in 1929 indicated that a 10pt font size is
optimal for readability.

 ▶ According to Tinker and Paterson’s study in 1949, a minimum of 2pts leading
is required for legibility, and an additional 2pts can boost readability by 3.24
times.

 ▶ A study by Paterson and Tinker in 1932 found that sans-serif typefaces are
equally readable compared to typefaces with serifs.

 ▶ Their research from 1928 revealed that uppercase letters are 11% slower to
read than lowercase letters.

1	 Karow, P. (2012). Font Technology: Methods and Tools (Softcover reprint of the original 1st
ed. 1994 ed.). Springer.

example of kerning

17

 ▶ Regarding italic, slanted, or oblique typefaces, they found that these typefac-
es are read at the same speed when used for short text portions. However, for
longer reading, the results deteriorate, with a potential decrease in reading
speed of up to 6.3% over a 30-minute reading period.

The second book, authored by Haralambous and Horne in 2007, titled “Fonts
& Encodings: From Advanced Typography to Unicode and Everything in Be-
tween,” offers a comprehensive over-
view of how text is stored in com-
puters. This exploration spans the
evolution of text encoding standards
from as early as 1931 up to the contem-
porary standards of 2007. The book pri-
marily centers on the intricate topic of
Unicode and the storage and display of
text from diverse regions of the world.

The simplicity of encoding and dis-
playing our Latin alphabet on screens
is highlighted. In an era marked by
constraints on the number of available
glyphs for font designers, engineers
devised code-pages, providing a man-
ual for coding and decoding files. This
may resonate with experiences like
watching a movie with Eastern Euro-
pean subtitles but encountering encod-
ing issues that result in the display of
incorrect characters. With advance-
ments in storage capacity and memo-
ry, Unicode emerged, offering distinct
ranges of glyphs for each script, such as
Latin, Greek, Cyrillic, Georgian, Ko-
rean, Chinese, Thai, Vietnamese, and
even emojis familiar from various messaging apps. It’s worth noting that as of
that time, nearly 150 scripts were not yet encoded into Unicode, indicating ongo-
ing work in this area.

While this aspect of text encoding touches my work only peripherally, the
book’s extensive content, spanning over 1000 pages, offers valuable insights. Of
particular interest to me are the appendix sections, which delve into the tech-
nology behind curves, hinting, and OpenType features. These resources serve
as valuable references as I refine my understanding of what QA entails in the
context of font engineering and testing.

2.2. QUESTIONNAIRE

Another method I’ve employed is to gain insights into how fonts are tested by
other font engineers and type designers. To facilitate this, I’ve developed a con-
cise Font Quality Assurance questionnaire. This approach allows me to collect
contemporary and pertinent information about the current state of testing
methods, tools, and resources in the field.

Book cover of Haralambous and Horne, 2007. Fonts
& Encodings: From Advanced Typography to Uni-
code and Everything in Between

18

2.2.1. Contents

Overall information

Your field / Job Title / What do you do?
How you consider yourself? (I know independent designers do
all of that, but let me understand what is your expertise)

 ▶ Type Designer (TD)
 ▶ Font Engineer (FE)
 ▶ Quality Assurance (QA)
 ▶ TD/FE/QA (unspecified font related work, ie. touching fonts)
 ▶ Management/Sales/Marketing (related to fonts, but not actually touching

fonts)
 ▶ Other…

Independent/Foundry / Employee

 ▶ Major Foundry (20+ people)
 ▶ Independent Solo / Independent Foundry
 ▶ Employee of a Foundry=

How many fonts you do produce per year (not only for yourself,
overall)

 ▶ 1–5
 ▶ 6–10
 ▶ 11–20
 ▶ 20+

How do you consider your skills? (points like stars 1–least
true, 5–most true)

 ▶ I do type design with ease
 ▶ I understand concept of metrics / kerning
 ▶ I understand anchors and building diacritics
 ▶ I know what features do
 ▶ I can setup a font before export
 ▶ I know some font standards
 ▶ I know how to test fonts in apps (InDesign, Word, etc...)
 ▶ I know how to test fonts in command-line
 ▶ I know how to test fonts in browsers

What Font software you use

 ▶ Glyphs
 ▶ Fontlab
 ▶ Robofont
 ▶ FontForge
 ▶ Other

19

QA specification (second part)

Do you use any kind of QA to test your fonts?

By ANY I mean literally anything, even trying to install the font is kind of a QA, or opening
InDesign and seeing the styles is some sort of QA.

 ▶ Yes
 ▶ No

Do you test your fonts before you export them from Font Soft-
ware or after?

 ▶ Only in Font Software (Before)
 ▶ After Export
 ▶ Before and After

Do you use internal / external QA tools?

 ▶ Internal (tools developed by you or company you work for, not considering
Font SW)

 ▶ External (tools developed by other people, including Font SW)

What do you test?

HINTS: Design QA (diacritics, outline errors, alignment zones, mixed glyphs, ...), Char-
set, (glyph order, ligatures, duplicates, spaces, hyphens, unicodes...) Font Info (masters,
stems, interpolations, style linking, instance naming, italic angle, vertical metrics, ...),
Metrics, Kerning, Features. After export: InDesign, Word, style naming, style linking,
features working, kerning working, hinting, ...

 ▶ Text Answer only

What would you like to test, and you don’t have the tool or
the knowledge or the time to do so?

 ▶ Text Answer only

What QA tools do you use?

name, authors, web address pretty please

 ▶ Text Answer only

Do you know any nice tool, that is not necessarily QA, but it
is useful or pleasant work with in regards of fonts?

 ▶ Text Answer only

20

In a broader view Is there a functionality that you miss in
current font files?

 ▶ Text Answer only

And related to last question is there a functionality / table
/ process which you find obsolete / redundant / not useful to-
day?

 ▶ Text Answer only

QA Tool (third part)

Would you be interested on a new website giving you QA testing
in one place or you feel comfortable with your tools?

 ▶ Yes, I would at least try it
 ▶ No, I’m fine with what I have at the moment

Would you be interested in a publication/wiki explaining font
standards and QA testing?

 ▶ Yes
 ▶ No

Would you be interested in Foundry Specific testing of fonts
(metadata, charsets, etc...)

 ▶ Yes
 ▶ No

There could be several levels of user interaction. What level
you think would be appropriate for you?

If you choose other option, please describe your expectations

 ▶ Easy / Beginner (only essential must have checks, so the font is not broken,
easy explanations, not using much of a slang)

 ▶ Intermediate / Advanced (more checks, deeper explanations, use of some
slang)

 ▶ Expert / Professional (all checks, full explanation, specification citations, use
of slang, on server checks, downloadable results of external tests)

Where would you prefer to use the tool?

Fonts on the server will be deleted after testing anyway.

 ▶ Upload font to server / server/side = more checks
 ▶ Browser side check, no upload / local = less checks
 ▶ I would install it on my/our server and test it locally / self-server

21

Do you miss some kind of test or functionality related to QA?
Anything that would make QA easier?

 ▶ Text Answer

2.2.2. Results

I received over 60 responses from font foundries and individuals worldwide,
which provided invaluable insights into current font testing practices. The
respondents predominantly consisted of type designers, with 85% working
independently, and 90% producing between 1 and 5 fonts annually. A significant
majority, at 65%, exhibited a high level of skill in type design. Moreover, a sub-
stantial proportion of respondents possessed proficiencies in areas such as met-
rics and kerning (83%), working with anchors (81%), and utilizing font features
(76%). Approximately 61% could prepare fonts for export, while more than half
(52%) have knowledge of some industry standards. When it came to font testing
environments, slightly over half (61%) conducted tests in applications like In-
Design, but only a minority (23%) were acquainted with command line testing,
and fewer still (40%) were familiar with browser-based testing. Notably, 82% of
respondents indicated using Glyphsapp as their preferred tool.

The next segment of the survey delved into testing practices. A staggering 93%
of participants confirmed that they engage in font testing in some form. A sig-
nificant majority (73%) conducted tests both before and after exporting fonts,
demonstrating a comprehensive approach to quality assurance. Furthermore,
55% of respondents reported having established internal testing procedures,
highlighting their commitment to quality control. Nearly all respondents (90%)
made use of external testing tools to augment their testing efforts. The specific
aspects of font testing and the corresponding outcomes are detailed in the fol-
lowing table:

STAGE TEST

META does the font match the OpenType spec

META style linking

META stems

META italic angle

META underline thickness and position

META strikeout position and size

META alignment zones

META weight class

META match the names the proper weight classes

META width class

META use Typo Metrics Custom Parameter

CHARSET charset

CHARSET stylistic sets have friendly names

CHARSET glyph order

CHARSET ligatures

22

STAGE TEST

CHARSET duplicates

CHARSET spaces

CHARSET hyphens

CHARSET unicodes

CHARSET all Tabular glyphs have same width

CHARSET glyphs that are neither accessibly via Unicode or feature

OUTLINE outline errors

OUTLINE outline direction

OUTLINE kinks

OUTLINE overshoot consistency

GLYPH base glyph is first

GLYPH composites with same base glyph have consistent width

GLYPH diacritics

GLYPH mixed glyphs

GLYPH rotated and scaled components

METRICS metrics

METRICS vertical metrics

KERNING kerning

KERNING kerning: consistency among masters

KERNING touching Glyphs (kerning?)

It covers quite big amount of I think can be tested. Next question covers testing
tools which goes into this tab:

https://wakamaifondue.com/
https://www.setuptype.com/x/fontinspector/
https://fontdrop.info/
https://fontgauntlet.com/
https://underware.nl/latin_plus/character_set/
http://vmt.dizen.cz/
https://opentypecookbook.com/
http://www.cyreal.org/Font-Testing-Page/
https://www.alphabet-type.com/tools/charset-checker/
http://ultrasparky.org/archives/2014/03/spacing_tests.html
https://vertical-metrics.netlify.app/
https://lorp.github.io/samsa/src/samsa-gui.html
https://hyperglot.rosettatype.com/
https://www.motaitalic.com/tools/font-tester/latin/

https://wakamaifondue.com/
https://www.setuptype.com/x/fontinspector/
https://fontdrop.info/
https://fontgauntlet.com/
https://underware.nl/latin_plus/character_set/
http://vmt.dizen.cz/
https://opentypecookbook.com/
http://www.cyreal.org/Font-Testing-Page/
https://www.alphabet-type.com/tools/charset-checker/
http://ultrasparky.org/archives/2014/03/spacing_tests.html
https://vertical-metrics.netlify.app/
https://lorp.github.io/samsa/src/samsa-gui.html
https://hyperglot.rosettatype.com/
https://www.motaitalic.com/tools/font-tester/latin/

23

RMX tools in Glyphsapp
Kern On in Glyphsapp
Speed Punk in Glyphsapp

Missing Functionality: Respondents expressed a need for certain missing func-
tionalities, including security features, Higher Order Interpolation (HOI), auto-
mated kerning generation, and greater automation in general.

Obsolete Features: On the flip side, when asked about obsolete features, the most
common responses were legacy marks, vertical metrics, and PANOSE.

Interest in New Tools: An overwhelming 97% of participants expressed a desire
for a new font testing tool, while 98% indicated an interest in a publication that
explains Quality Assurance (QA) and font testing. Additionally, 90% of respon-
dents expressed interest in the ability to test custom metadata or charsets in
foundry-specific tests, underscoring the importance of tailored QA solutions for
specific font foundries.

Testing Levels: A majority (60%) of interviewees expressed a preference for using
the new tool at the Expert level, with an additional 30% comfortable at the In-
termediate level. Some respondents also emphasized the importance of explana-
tions accompanying test results, suggesting a more sophisticated version of the
tool where each test is elucidated and supported with external links for refer-
ence. This insight hints at the possibility of streamlining the tool’s test versions,
potentially offering only beginner and expert levels to cater to users’ needs.

Testing Locally vs. Sending Fonts: A critical question revolved around whether
users would prefer to send fonts to a server for testing or conduct tests locally.
Roughly half of the respondents would be willing to send fonts to a server, while
the other half displayed reservations, likely due to common practices of sign-
ing Non-Disclosure Agreements (NDAs) with clients to safeguard intellectual
property (IP). Interestingly, only a small fraction (17%) indicated a preference
for a browser-based version, leading to the decision not to invest further in this
option. Furthermore, 33% of respondents expressed an interest in installing the
app on their own servers, highlighting strong support for an open-source ap-
proach to the project.

Overall, the questionnaire has played a pivotal role in aligning the project’s goals
with the needs and preferences of users. It has informed critical decisions about
the tool’s functionalities and test procedures, ensuring that the final product
meets the demands of font engineers and type designers effectively.

24

3. APPLICATION

3.1. REQUIREMENTS

To succeed with development of an application, I need to set realistic require-
ments, which meet with aim of this thesis and given time.

Here’s a list of features that could be the base of the new application:

 ▶ Any computer architecture or operating system (OS) or font development app
 ▶ Based on existing frameworks
 ▶ Easily extensible
 ▶ Free to use (uncustomized version)
 ▶ Able to test multiple OpenType fonts
 ▶ Able to test OpenType font families
 ▶ Usable (UX)
 ▶ Tested on real exported fonts
 ▶ Tested by real FEs

The first point mentioning any OS or development app is very important. There
are few of type design applications out there running on few different oper-
ating systems. That makes a mixture that would easily employ whole room of
engineers. I’m not native programmer in any environment and it would be
extremely hard for me to get to know all the different specifics of releasing an
app in these systems or apps. Developing plugin would also limit me to current
state of the type design application set and it would be hardly extensible later
when updates or new apps will be coming to the market. Also, I want to mention
there are already on-line apps for type design and there could be also difficult to
integrate this app into. To summarize this, point this app should be something
not connected to current type design applications and rather be independent of
any specific environment. This will also make sure that it will be accessible to
biggest part of the type industry.

For the sake of simplicity, all mobile devices will be ignored during develop-
ment because there are no fonts accessible on them and all of the font design is
happening on desktop computers. If this situation will change in the future, the
logic can stay the same, only visual hierarchy of the presentation will need to
change.

To define where it should be deployed, we need to find an environment which
is architecture, OS and app independent – the only one available is World Wide
Web. Web environment is independent, up to date and well maintained by many
groups of developers from many companies. This ensures also stability and lon-
gevity of this app compared to other development environments. Web is acces-
sible from any location (theoretically), any OS or app and all the developers try
to stick with its standards. There is great support for current font formats and
their features, thus no need to write extra code to make something work.

This app should be based on existing framework is a logical point, where I can
only state that there are few frameworks that can handle fonts and most of
them can extract all the needed data from the font files. So, there is no need to

25

write own framework or library, that would allow us to access properties or
functions of the fonts. Also, that would not be the aim of this thesis.

Here are the options I’ve researched:
 ▶ Free Type (original authors: David Turner, Robert Wilhelm, Werner Lemberg)

project written in C++ which could be used and deployed on the webpage. I
personally have zero experience using FreeType, I only use TTF Autohint as a
user of Glyphsapp (which is part of it) and my knowledge of C++ is fairly out-
dated. It is well maintained and well written library that focus on displaying
font in C++ applications. This approach would lead to server-side application,
where users would have to upload their fonts to the server.

 ▶ Opentype.js (author: Frederik De Bleser) is a library written in JavaScript.
That was a serious option to consider, but at the end I did not choose to pur-
sue it. It has a great advantage of inspecting fonts in a window of a browser;
therefore, nothing is stored on the side of the server, which is important for
many designers working under NDA for other companies. I will address this
issue later on in this chapter.

 ▶ FontTools (author: Just van Rossum) is a python library for reading, manipu-
lating and rendering fonts. It is well maintained open-source library used on
many type and engineering projects. I’m quite familiar with this library and
with Python as a language so this seems and an ideal choice for this applica-
tion. Running python on a webpage is not native and you have to use frame-
work as Django to make it work.

To get back to the server-side / client-side option to choose from. The state of
the font industry is that there is an over production of fonts. There are many
more fonts that market would ever need, many duplicates or near duplicates of
famous fonts and so on. I don’t want to discuss here why there should be more
fonts, but I can safely say that there is always some new problem which could
be solved by a new font and this solution is much more often a custom font.
Custom fonts means that the designer creates font family unique to the client’s
needs and that usually involves NDA to be signed there. In NDA usually states
that no other persons or system should be able to access the font files, and this
would effectively prevent the designers from using server-side applications.

Client-side application has an advantage of being completely run in a client’s
window and not sending any data to the server. Regarding last paragraph that
would be better option to pursue, but I decided not to go this way. Previously
I’ve tried to build such an app with opentype.js as a test of feasibility. It was
working nicely, but at some point, I was thinking that this could not take ad-
vantage of server capabilities. There is no way of incorporating this into larger
projects, custom test would be much harder to implement, and I would not be
able to run any python scripts or tests that already exists. Also, the computa-
tion time would be heavily dependent on performance of client’s computer. The
choice here was not easy, but the reasons behind server-side were stronger as a
long term solution – user profiles, test history, bigger scalability, FontTools and
Python libraries and possible integration / customization for clients. There may
be legal possibility to securely rent users piece of shared storage space and avoid
the problem with data privacy and NDAs.

Another feature listed is to be easily extensible. That means if anybody wants to
add their own functionality, they can do it easily. Also, that means as developer
I can easily incorporate new functionality if available for example in any library.
To be able to run custom tests we need to define how this may work. Going to
the core of the meaning, that would suggest that users could write their own

mailto:just@letterror.com

26

test function and add it to the testing procedure. This would be possible, but
quite hard to implement. I believe most of the users do not wish to write their
own functions, but they may want to specify the parametres of the already
existing functions. There may be few that would like to have more insight in the
process and maybe adjust some values or define own lists to test from their own
test routines. This is the custom that is feasible and easy to incorporate. The user
will only provide human readable data to the system, and it will be saved to da-
tabase/filesystem and run in his own account. This is also good reason to choose
server-side system.

It must be tested or exported fonts. Testing source files in design app is very
important during design phase or when transitioning to the production of the
fonts. The issue here is that the results of export of the same file can vary from
different applications or even different versions of one application. So, testing
the source file is not reliable way of testing the fonts or families. Clients receive
exported font files, not source files (usually), so final testing must focus on these
deliverables..

There are 2 points addressing multiple fonts and font families. The app should
support batch testing, allowing multiple font files to be analyzed simultane-
ously. Testing only single file would be very time consuming and it would not
allow to compare the styles between each other. Testing a font family gives the
designer another level of overview on the font file set. There are certain param-
eters that has to be aligned though all the files in the family and this needs to be
tested and presented to the user as well.

It has to be tested by real Font Engineers. That would be an ideal state of devel-
opment, but with the list of e-mails from questionnaire I’m fairly confident that
I will find at least few engineers to test it with. I’m also a font engineer, but my
opinion on the solutions is biased and I may not see better solutions because I
could be stuck in local minimum and not be able to see better solutions. I will
regularly consult the process with fellow font engineers to have some sort of
feedback. I do not assume they will spend a lot of time testing it, but even few
remarks can drastically help me move forward.

This is connected to the UX part, where it states it must be usable. That is slight-
ly vague definition, because there is no way we can say something is usable. We
only can state that is not usable, when the expected action is not happening. It
could be than evaluated as negation of the not usable state, but that is not cor-
rect it terms of usability. We could take a definition from usability book: “High-
ly usable web sites are intuitive. They are transparent. They support the users
and allow users to accomplish their goals quickly, efficiently, and easily. For
example, one aspect of usability is that users should know what to do next. They
should either be given explicit instructions or the web site should follow some
known interaction pattern.“2 We can also find a more recent definition: “Good
website usability means that a website is intuitive, meaning that users can
navigate it without having to consciously think about the navigation process. It
also means that the information presented is clear, the website is reliable and
performs well across various devices and browsers. In essence, web usability
is about creating a seamless, straightforward, and engaging on-line experience
for users.”3 For this feature there are good conditions. All the web-browsers are
rendering content very much the same and developer can rely on standards be-

2	 Brinck, T., Gergle, D., & Wood, S. D. (2002). Designing Web sites that work : usability for
the Web. Morgan Kaufmann Publishers.

3	 Website Usability: The Ultimate Guide for 2024. (n.d.). Survicate.com. https://survicate.
com/blog/website-usability/

27

ing relatively well implemented. To ensure seamless user experience, designer
should start with sitemap and wireframes. “Wireframes are basic visual repre-
sentations of a user interface that outline the structure and layout of a webpage
or app.”4 Big role in designing good experience on the website is continuous
testing. As mentioned before I will conduct user testing with real font engineers
as often as possible.

The application must be free for users. Here it was never a decision to me, but
let’s discuss both possibilities. Making this application as a paid service only is
definitely one of the possible ways. Having money can bring better performance
on the server side, allocating dedicated server with more computational power.
It can pay developers constantly developing new test and improving the user
experience of the service. It would be completely valid approach. But one must
also see the context this is emerging in. There are competitors as discussed be-
fore like Font Bakery that can test many font properties for free, there are also
many web-sites that do testing of one specific feature. Also many of the prop-
erties could be tested in the design software already during development. So
why to pay for a new service, offering similar functionality as free competitors?
Would it attract enough users to make itself sustainable? I don’t know. But mak-
ing it fee based will discourage most of the uneducated, that could benefit the
most from this app. And helping the broad public, enthusiastic hobby designers,
lone wolfs was always the my aim on this project. Also I think there could be
another way of making this application self sustainable, but still free for all the
users. Let’s make the most advanced users pay for customization and advanced
features.

I am optimistic that I can implement most of the envisioned features success-
fully.

3.2. INTERNAL STRUCTURE

The application will have to have 2 layers where different users with different
roles will interact. Django offers effective way of connecting these two together.

Layers:

 ▶ Frontend
 ▶ Backend

 ▷ 	Python scripts
 ▷ Filesystem
 ▷ Database

“In software development, frontend refers to the presentation layer that users
interact with, while backend involves the data management and processing be-
hind the scenes. In the client–server model, the client is usually considered the
frontend, handling user-facing tasks, and the server is the backend, managing
data and logic. Some presentation tasks may also be performed by the server.”5

4	 Interaction Design Foundation. (2016, September 25). What is Wireframing? The Interac-
tion Design Foundation; Interaction Design Foundation. https://www.interaction-design.
org/literature/topics/wireframe

5	 Frontend and backend. (2021, December 20). Wikipedia. https://en.wikipedia.org/wiki/
Frontend_and_backend

28

Frontend is a what we see when we’re visiting any webpage as a users. We inter-
act with the design, click on the buttons and read the results. In this case users
will even upload data to the server and pass them to 2nd layer, but they won’t
have any interaction with other data there (That would involve creating ac-
counts and manipulating files or tests contents). Second layer is so called back-
end a layer where administrator of the page is involved. It’s not necessarily the
same person as the programmer, but here it is the case. Backend is a layer where
internal data of the web page are manipulated so the presentation in first layer
can change. Usually you add a blog post, change picture of an article or upload
new media to gallery. In this case admin can add/update/delete a new charset or
language to check against, admin can add a test to any filed of name table or just
alter existing parameters of inserted tests. More complex changes in the system
must be aligned with programmer. The backend will interact with filesystem by
saving user uploaded font files, but also it will read data from files. These data
could be definitions of test, charests, languages, metric, kerning or features.
The file format for such a storage will be discussed later. Also the backend will
interact with database, where all the data about each user, test or analysis will
be stored.

3.3. FILE STRUCTURE

There is multiple file types used in Django natively. There are .py files – python
scripts which are run on the server in backend, there are .html, .css and .js files
used for frontend presentation.

But in this short chapter I would like to focus on file types which will be used by
the application to store its input data for testing on the file system apart from
database.

The file structure should be easy to load to the application and easy to read by
human. The size of stored data does not pose a problem in this case at the size of
stored data is not very big. Very easy to read by humans and even by computers
is XML, so without any deeper research I would implement this format here.

3.4. DATABASE STRUCTURE

Image above shows database structure of the latest version (2025_02_13). The
database structure is one of the main parts of the functionality of the Django
Framework. The structure is not static from the beginning, it’s growing as the
functionality is added. The important decisions needs to be made straight away,
because changing the structure in the later in the development would be very
hard if not impossible.

There are several main tables in the structure:

 ▶ fontanalyzer_analysis – gathers all the data about the analysis, the user, the
foundry, date and time, which view level was chosen, hash and log; further to
this table there are connected tables which are containing information about:
analyzed fonts, routines run in this analysis, results for every test in this rou-
tine, results for every family test in family routine

29

 ▶ fontanalyzer_singulartest – this table contains information about every single
test possible to run in the analyzer. It has name, description, function to run
and parameters. This singular test is than connected to:

 ▶ fontanalyzer_collectionofsingulartests which is a set of the same kind of tests,
like metadata test, language tests, etc… and these are than connected to:

 ▶ fontanalyzer_routine which describes the routine from the last table

Complete database structure of fontanalyzer.app

So to summarize the structure here – The user uploads the fonts, they are stored
on the server disc storage and the analysis is created, knowing where the fonts
are. Based on the level of view the user selected there are routines6 inserted to
the analysis7 and then every test in every routine is loaded from the database
and run with corresponding parameters that are either in the database or stored
on the server disc as a file. The results of each test are stored in tables connected
to the analysis for either singular test or family test. All of this is than read and
structured on the time of rendering Frontend and presented to the user.

3.5. ANALYSIS

3.5.1. Creation of analysis

As described briefly in the previous paragraph the testing procedure starts after
the user has selected view level and uploaded the fonts to the server. The font
files are stored on the server disc.

6	 discussed in 4.5.1

7	 discussed further also in 4.5.3

30

Following is creation of the analysis which holds the ID, time, view level, log or
foundry (if custom is selected). All following tests and results are assigned to
this analysis ID.

3.5.2. Phases (Routines)

Depending on the user level selection the rou-
tines are inserted to the process. Routine is an
internal name for a group of tests (phase or
better category) which will be discussed further
in this chapter. There are default routines which
are the same for every user level, but there are
also routines that are different and are consisting
of different tests or test with different parame-
ters from the default. Also, custom tests can be
inserted in the process this way. Custom test rou-
tine is bound to the foundry in the database, so
user has to insert the foundry ID to run custom
test. This functionality is limited only to show-
case the possibility of doing so. The aim of this
work is not to build comprehensive backend to
this feature, but rather to focus on the testing.

From the book research, results of the question-
naire and my practice as FE I’ve come to 8 catego-
ries (routines) of tests:

 ▶ Meta
 ▶ Charset
 ▶ Languages
 ▶ Glyphs
 ▶ Metrics
 ▶ Kerning
 ▶ OT Features
 ▶ Family tests

3.5.2.1. Meta

In meta all the information about the font is read
and tested. This mainly consists of reading name,
hhea, head, OS/2 and post table. There are more
tables containing information about specific
kinds of fonts like variable fonts, color fonts, pix-
el fonts or AAT fonts. These fonts are minority in
the production, or they are deprecated. For pur-
pose of this work, they are not considered, but
this may change later in the future. For example,
support for variable and color fonts could be very
useful.

“The name table (tag: name) allows you to include
human-readable names for features and settings,
copyright notices, font names, style names, and

Process of fonts analysis

Files uploaded and stored

Based on the view level
routines are inserted

From routines individual
tests are inserted

For every font the
internal data are read
and saved to dictionaires

Analysis is created
ID is created
Fonts are assigned to this
analysis

For every routine in
current analysis, all the
tests are run and results
saved

Results are presented

31

other information related to your font.”8 Here’s the most important information
to read and test:

NAME CONTENT

NID0 Copyright notice.

NID1 Font Family.

NID2 Font Subfamily.

NID3 Unique subfamily identification.

NID4 Full name of the font.

NID5 Version of the name table.

NID6 PostScript name of the font

NID7 Trademark notice.

NID8 Manufacturer name.

NID9 Designer (name of the designer of the typeface).

NID10 Description.

NID11 URL of the font vendor.

NID12 URL of the font designer.

NID13 License description.

NID14 License information URL.

NID15 Reserved.

NID16 Preferred Family.

NID17 Preferred Subfamily.

NID18 Compatible Full (MacOS only).

NID19 Sample text.

NID20–24 Defined by OpenType.

NID25 Variations PostScript Name Prefix.

NID26–255 Reserved for future expansion.

NID256–32767 Font-specific names.
9

“The hhea table contains information needed to layout fonts whose characters
are written horizontally, that is, either left to right or right to left. This table
contains information that is general to the font as a whole.“10 Here are most im-
portant data to read and test from this table:

8	 Font Names Table – TrueType Reference Manual – Apple Developer. (2020). Apple.com.
https://developer.apple.com/fonts/TrueType-Reference-Manual/RM06/Chap6name.html

9	 Font Names Table – TrueType Reference Manual – Apple Developer. (2020). Apple.com.
https://developer.apple.com/fonts/TrueType-Reference-Manual/RM06/Chap6name.html

10	 Horizontal Header Table – TrueType Reference Manual – Apple Developer. (2025). Apple.
com. https://developer.apple.com/fonts/TrueType-Reference-Manual/RM06/Chap6hhea.
html

32

NAME DESCRIPTION

ascent Distance from baseline of highest ascender

descent Distance from baseline of lowest descender

lineGap typographic line gap

advanceWidthMax must be consistent with horizontal metrics

minLeftSideBearing must be consistent with horizontal metrics

minRightSideBearing must be consistent with horizontal metrics

xMaxExtent Compatible Full (MacOS only).

caretSlopeRise Sample text.

caretSlopeRun Defined by OpenType.

caretOffset Variations PostScript Name Prefix.

metricDataFormat Reserved for future expansion.

numOfLongHorMetrics Font-specific names.

11

“The head table contains global information about the font. It records such facts
as the font version number, the creation and modification dates, revision num-
ber and basic typographic data that applies to the font as a whole. This includes
a specification of the font bounding box, the direction in which the font’s glyphs
are most likely to be written and other information about the placement of glyphs
in the em square.“12 Here’s the most important information to read and test:

NAME DESCRIPTION

fontRevision set by font manufacturer

flags

unitsPerEm range from 64 to 16384

created international date

modified international date

xMin for all glyph bounding boxes

yMin for all glyph bounding boxes

xMax for all glyph bounding boxes

yMax for all glyph bounding boxes

macStyle Bold, italic, underline…

lowestRecPPEM smallest readable size in pixels

fontDirectionHint Mixed directional glyphs

13

11	 Font Names Table – TrueType Reference Manual – Apple Developer. (2020). Apple.com.
https://developer.apple.com/fonts/TrueType-Reference-Manual/RM06/Chap6name.html

12	 Font Header Table – TrueType Reference Manual – Apple Developer. (2025). Apple.com.
https://developer.apple.com/fonts/TrueType-Reference-Manual/RM06/Chap6head.html

13	 Font Header Table – TrueType Reference Manual – Apple Developer. (2025). Apple.com.
https://developer.apple.com/fonts/TrueType-Reference-Manual/RM06/Chap6head.html

33

“The OS/2 table consists of a set of metrics that are required by Windows. It is
not fully used by Apple platforms.”14 Here’s the most important information to
read and test:

NAME DESCRIPTION

version table version number (set to 0)

xAvgCharWidth average weighted advance width of lower case letters
and space

usWeightClass visual weight (degree of blackness or thickness) of
stroke in glyphs

usWidthClass relative change from the normal aspect ratio (width
to height ratio) as specified by a font designer for the
glyphs in the font

fsType characteristics and properties of this font (set unde-
fined bits to zero)

ySubscriptXSize ySubscriptXSize;

ySubscriptYSize recommended vertical size in pixels for subscripts

ySubscriptXOffset recommended horizontal offset for subscripts

ySubscriptYOffset recommended vertical offset form the baseline for
subscripts

ySuperscriptXSize recommended horizontal size in pixels for super-
scripts

ySuperscriptYSize recommended vertical size in pixels for superscripts

ySuperscriptXOffset recommended horizontal offset for superscripts

ySuperscriptYOffset recommended vertical offset from the baseline for
superscripts

yStrikeoutSize width of the strikeout stroke

yStrikeoutPosition position of the strikeout stroke relative to the base-
line

sFamilyClass classification of font-family design.

panose 10 byte series of number used to describe the visual
characteristics of a given typeface

ulUnicodeRange Field is split into two bit fields of 96 and 36 bits each.
The low 96 bits are used to specify the Unicode blocks
encompassed by the font file. The high 32 bits are
used to specify the character or script sets covered by
the font file. Bit assignments are pending. Set to 0

achVendID four character identifier for the font vendor

fsSelection 2-byte bit field containing information concerning
the nature of the font patterns

fsFirstCharIndex The minimum Unicode index in this font.

fsLastCharIndex The maximum Unicode index in this font.

14	 OS/2 Compatibility Table – TrueType Reference Manual – Apple Developer. (2025). Apple.
com. https://developer.apple.com/fonts/TrueType-Reference-Manual/RM06/Chap6OS2.
html

34

sTypoAscender The typographic ascender for this font. This is not
necessarily the same as the ascender value in the
hhea table.

sTypoDescender The typographic descender for this font. This is not
necessarily the same as the descender value in the
hhea table.

sTypoLineGap The typographic line gap for this font. This is not
necessarily the same as the line gap value in the hhea
table.

usWinAscent The ascender metric for Windows. usWinAscent is
computed as the yMax for all characters in the Win-
dows ANSI character set.

usWinDescent The descender metric for Windows. usWinDescent is
computed as the -yMin for all characters in the Win-
dows ANSI character set.

ulCodePageRange1 Bits 0–31

ulCodePageRange2 Bits 32–63

sxHeight The distance between the baseline and the approxi-
mate height of non-ascending lowercase letters mea-
sured in FUnits.

sCapHeight The distance between the baseline and the approxi-
mate height of uppercase letters measured in FUnits.

15

“The post table contains information needed to use a TrueType font on a Post-
Script printer. It contains the data needed for the FontInfo dictionary entry as
well as the PostScript names for all of the glyphs in the font. It also contains
memory usage information needed by the PostScript driver for memory man-
agement.”16

NAME DESCRIPTION

italicAngle Italic angle in degrees

underlinePosition Underline position

underlineThickness Underline thickness

isFixedPitch Font is monospaced; set to 1 if the font is monospaced
and 0 otherwise (N.B., to maintain compatibility
with older versions of the TrueType spec, accept any
non-zero value as meaning that the font is mono-
spaced)

17

15	 OS/2 Compatibility Table – TrueType Reference Manual – Apple Developer. (2025). Apple.
com. https://developer.apple.com/fonts/TrueType-Reference-Manual/RM06/Chap6OS2.
html

16	 Glyph Name and PostScript Font Table – TrueType Reference Manual – Apple Developer.
(2025). Apple.com. https://developer.apple.com/fonts/TrueType-Reference-Manual/RM06/
Chap6post.html

17	 Glyph Name and PostScript Font Table – TrueType Reference Manual – Apple Developer.
(2025). Apple.com. https://developer.apple.com/fonts/TrueType-Reference-Manual/RM06/
Chap6post.html

35

All these table are vital part of testing metadata. Most of these values can be
tested against computed values from other data in the font or it can be tested
against definitions OT Specification (specified maximum length, specified logic,
exact values)

3.5.2.2. Charset

In this stage the font is tested in comparison to specified charset. The table cmap
contains information on what characters are included in the font. The stored in-
formation is character code (for example Unicode) and it’s mapping to the glyph
ID. One glyph can have multiple codes assigned. Example of this is uni-case font
where uppercase and lowercase share the same glyph ID for each of the cases of
a letter.

There are many definitions of charsets from the past. As example we can take
Adobe Latin 1, 2, 3, 4, ASCII, ISO-8859-1, Windows 1250–1258. They all come from
the times before Unicode where only 256 glyphs were allowed in one font file
and therefore the file had to be interpreted to be read in the correct way for the
operating system and selected language. Nowadays there are modern charsets
like Opentype Latin Pro or Latin Extended – A or B. There are also many custom-
ized charsets of type foundries. The aim of this work is to prepare testing for any
charset and to gather the most basic ones and test against them. New charsets
will be added, and it must be easy and straightforward work. As mentioned
before XML will be used as a format and it will be stored on the system disc as a
file. Then it can be added, modified or deleted easily.

The overall list of glyphs and Unicodes can be presented to the user.

3.5.2.3. Languages

This stage seems at first very similar to the previous, because it is in principle
the same – testing against defined charset. I’ve decided to split these two to pre-
vent mixture of the terms and get more visual clarity to the results. One thing is
to test against charset – that is something very type foundry specific and anoth-
er thing is testing against language which is more client/user specific. Designers
often promote fonts with number of supported languages.

For purpose of this work, I will gather most of the European Latin charsets and
process them again into XML definition files. These will be then tested against
and presented. Quality source data for compiling the language definitions can
be found in Hyperglot made by Rosetta Type.

3.5.2.4. Glyphs

Glyphs stage should show the shape and details of every glyph in the font. For
such a task the application has to read the outline data and present them to
the user. There are two kinds of outline data in current format of the fonts:

 ▶ OTFs are using postscript outlines – counterclockwise cubic Bézier curves
 (3rd order). Such an outline is defined with 2 points and 2 handles in case of
curved line or just two points in case of straight line. FontTools library I use
to handle the font data can convert such an outline to SVG commands and
these can be rendered on the results HTML page.

36

 ▶ TTF outlines are made of clockwise straight-line segments and quadratic
Bézier curves. These curves are mathematically simpler and faster to process
than cubic Bézier curves, which are used both in the PostScript-centered
world of graphic design and in Type 1 fonts. However, most shapes require
more points to describe with quadratic curves than cubics. This outline can
also be converted to SVG by FontTools library.

Apart from displaying the outline, which does not give user any added informa-
tion about the outline there are few values that can be presented alongside:

 ▶ Unicode
 ▶ Width
 ▶ Left sidebearing
 ▶ Right sidebearing
 ▶ Xmin, Xmax
 ▶ Ymin, Ymax

These values can be read from glyf/cff table and from hmtx table.

From my research in tools and questionnaire there are few tests that can be
performed on the outlines to assure the needed quality – for example test for
unevenness or smoothness of curved outline. Another parameter that can be
tested is wether the points are in extremes. While not strictly required by font
specifications, ensuring points at extremes improves interpolation and hinting
reliability.

3.5.2.5. Metrics

Metrics are information about overall whitespace in the font. Every glyph in
the font is having default space on both sides of the design – right and left side-
bearing.

In stage of metrics the data are read from hmtx table and the table where out-
lines are stored. The data are consisting of left sidebearing, right sidebearing
and width for every glyph. This data can be presented to the user and also test-
ed. The test can be for example if empty glyphs are having 0 in sidebearings or
if comb glyphs are having 0 in width. Also, glyphs with the same design should
have the same metrics.

In many tools to test font there is a test text field consisting of sample metric
texts to see if the font performs well. This can be also included in the presenta-
tion to the user.

Figure is describing metrics on each side of the glyph

37

3.5.2.6. Kerning

Kerning can be considered as exceptions to metrics to get overall pleasant
whitespace distribution. There are two kinds of kerning:

 ▶ flat kerning
 ▶ class kerning

Flat kerning is positioning one left glyph to right glyph by value. Class kerning
positions one class to another class. The class stands here for the representative
of the same design on the left or right side of the glyph. This is very useful when
working with accented letters, where usually the diacritic does not interfere
with whitespace on any side (there are exceptions of course) Both in flat and
class kerning you can position the same glyphs together. Class kerning saves a
lot of superfluous data that had to be otherwise saved as flat kerning. Here’s one
visual example of kerning principle between glyphs that otherwise would create
large whitespace gaps between shapes.

Kerning data are read in this stage from GPOS table. Older fonts have their kern-
ing stored in kern table. For the scope of this work this table will be omitted and
no kerning will be read from this deprecated table. All modern fonts are having
GPOS table.

Testing kerning is quite a difficult task. There is no ‘right’ value of any kerning
pair that can be tested out of the box. Even if some design principle is being
considered good practice and that would suggest one way of kerning, there may
be another way of designing the glyph and another way of kerning and we must
consider as possibility. One example of this is dcaron. Today’s good practice is to
design dcaron with negative right sidebearing and thus using positive kerning
for forthcoming glyphs with ascender or cap size stem on the left side. (ďl, ďk,
ď!, …) Although positive kerning for these pairs is a best practice, alternative
designs might justify different kerning approaches. Rather than enforcing fixed
kerning values, the tool identifies inconsistencies – like sudden jumps in kern-
ing values across masters – that could indicate design errors or incorrect inter-
polation.

Here comes the custom level of testing to play. For certain foundries/schools/
institutions testing certain font families there could be minimal kerning list of
kerning pairs to be included in the font. There could be certain requested way
of designing glyphs and thus implicating certain values in the kerning pair and
this can be tested. But only in custom level and only when user will define it in
the custom testing.

Kerning also can be displayed to the user. Such a list can be quite extensive and
hard to read, so there must be some kind of filtering to make it more usable to
read.

Figure is describing kerning between few pairs

38

3.5.2.7. OT Features

OT features or advanced typographic “layout” features which prescribe po-
sitioning and replacement of rendered glyphs. Replacement features include
ligatures; positioning features include kerning, mark placement, and baseline
specification.

It brings improvements in rendering combinations of glyphs by selecting more
appropriate version of the glyph, it can substitute few glyphs to one joined glyph
(ligature) and for many non-Latin scripts this functionality brings the only solu-
tion to shape complex combinations of glyphs that requires joining, accenting
or reshaping some or all the glyphs. It can also decompose previously composed
glyphs (in case of higher values of tracking for example)

OT Features are read from GSUB table. Similarly, as kerning there is no required
opentype feature that has to be inserted to every produced font.

Again, here the custom users could define their own minimal set of OT Features
or content of one specified feature like calt.

3.5.2.8. Family testing

All the 7 stages mentioned before are performing single font testing without
taking other fonts in the family into account. 8th stage – Family is here to make
sure that the font works not only as single font but as a part of a font family.
Font family consists of more fonts, which are usually reflecting on the design
an ordered sequence of values on a design axis. This design axis can be anything
that can change the design or the rendering of the fonts. Most known axes are –
weight, width, italic/slant angle, optical size, grade.

In the family testing stage, all of the previous stages can be tested in order to
compare the values in the whole family.

 ▶ In Meta stage the family should be consistent in naming, usWeight, usWidth
and slanting indicators. Many of the information values should be the same
as copyright, trademark, version, designer, manufacturer and so on. This may
seem unnecessary as usually the whole family is exported in one run from
one software, still there is a use case where for example italics are stored in
another project file and the metadata could be different by accident. This may
result in error message.

 ▶ In Charset and Language stage all the fonts usually should meet same charset
and language support, but there can be cases as true Italics where there can
be alternates of the upright design as stylistic set and therefore having differ-
ent charset as the upright version. Therefore, this may result only in warning
message.

Figure is describing opentype ligature substitution

39

 ▶ In Glyphs stage user may want to visually compare the design progress of
the whole family in each glyph. This helps prevent incorrect interpolation
between two masters. Also, in this stage every glyph can be tested to have
the same number of nodes and components. This also may point to incorrect
interpolation.

 ▶ In Metrics stage again all the metrics (left sidebearing, right sidebearing and
width) of each glyph of the family can be compared by value, but that does
not really give meaningful information to the user. There are simply too
many numbers. What can be done (it was pointed out in one of the testing I’ve
conducted with real FE) is to find glyphs that are deviating from the average
delta of one metrics to another style. For example, there can be average delta
10 points from Light to Regular style and if there is a glyph that is having delta
more than 50 points it is very suspicious. This can lead to forgotten/strange
metrics values or to improper interpolation where the glyph design is collaps-
ing and changing the value of one or more metrics abruptly.

 ▶ Kerning stage could show progress of kerning in each pair, but again as said
before, the testing is ambiguous here. There can be huge difference between
values from pair to pair. So, the same principle as in metrics cannot be ap-
plied here. Also, the progress in one pair may not be linear (the cause can be
for example volatile metrics) and this may prevent to take conclusions about
any value. There could be filtering present to help user navigate through the
values.

 ▶ OT features stage should test the same number of features and glyphs in the
features. This also may vary in the family so it may result only in warning
message.

3.5.3. Results

Every test has a result. It’s either error or a warning or combination of both. The
application has to store the results for every test performed in a way that it can
be presented to the user in a meaningful way. First level of filtering the output
is the above-mentioned test division into routines. This sorts the results for the
user into groups that are clearly labeled and understandable.

3.5.3.1. Assigning errors and warnings to font data

For every routine there is a content and tests. The content is there to inform the
user about the state of things in the font file. Not showing any signs of errors or
warnings, just plainly informing about the data there. To this layer of informa-
tion there has to be some way to include the results of all the tests run on these
data. I’ve decided to give every read value from the font an unique ID that could
be then referenced in the error or warning and displayed with it. In the end of
one test there can be none, one or multiple errors or warnings assigned to one
ID. Also multiple tests can reference the same IDs and effectively adding results
to some kind of list. The IDs will be assigned to values while reading the font file
and there are unique to the whole analysis (and in the range of all the fonts).
The IDs are not interchangeable between any fonts, every font has different IDs
depending on contents that are read. That also implies that when analysis is
completed the stored values are relevant only to the font files assigned to the
analysis and the result cannot be interpreted without these. The IDs without the
fonts has no meaning, only this app can reconstruct the results from these IDs.

40

Also this brings the question of reviewing old results in newer version of the
app. If the app is updated with more tests that are inserted in between already
existing ones, the ID sequence will be broken, and the results will fail to render
correctly. This must be evaluated if that poses a significant problem to the users.
In my use cases I consider such a testing as valid only in very short-term time
frame.

3.5.3.2. Structure of the result data

The information saved in a result must inform the user about the error or warn-
ing in a meaningful way. By storing only ID of the data where the issue occurs,
we are losing context. To add the context there must be a message stored in
addition of the ID. To categorize the results furthermore I’ve came to conclusion
that the app can have a storage where all the common knowledge about such an
issue can be stored (links to the specs, use cases, more detailed descriptions or
rationales). This would need another ID, but this time relevant to the issue and
these IDs would be consistent through all the tests and analysis. It will be like a
reference to a list of errors and warnings. Such a list or database of errors and
warnings and reasonings to them would be very time demanding and for pur-
pose of this work I’m only building the structure to enable it, but I’m not filling
it up with data.

This structure comes with one restriction that implies the message to the user
is text only. When researching all the tools mentioned in the questionnaire and
around the Internet and development applications, I found that it is hard to de-
code some written results regarding design or outline. Reading for example that
line 403, 211 to 401, 576 may be uneven is hard to visualize even for trained font
engineer. Having tens of such a messages to verify can be very time consuming.
I’ve decided to include rendering for such a cases to the SVG outline in glyphs
test category. If this app should reach high standards of usability, this must be
done.

Lastly each test should be able to save different results for different view levels.
Beginners cannot be confronted with very specific font engineering language
and overwhelmed with numbers and tables that are not meaningful to them.
To meet such a requirement every test must store results corresponding to each
of the 3 view levels (custom is using one of the 3 view levels it is not a different
view).

41

4. DESIGN

As discussed before process of composition of content and visual elements (de-
signing) must be done with regard to user centered design. UX design process
begins at understanding the objectives of a business and how best to serve a
target audience.
 This mean in this case to research existing solutions, identify the objectives of
this app and prepare solution that will be used with ease. Good start is to plan
what should be shown on which page of the application and build low-fidelity
representation of the layout. In the beginning I’ve listed 4 steps where the first
one happens on the side of the user:

1.	 preparation of material to be checked (on the side of the user)

2.	 selecting appropriate check kind/level

3.	 inserting this material to application/form

4.	 receiving results

4.1. ONE ENDLESS PAGE

In web environment the user comes to the initial page, selects the appropriate
check, inserts the fonts to the webform and receives the results. So basically
there could be 2 or 3 steps. My initial sketch of these steps and their lo-fi presen-
tation was this:

First wireframe of the app

42

The design consists of 3 steps out of 4 as mentioned before, where the first step
is left on the user side. In the 2nd step the user will drop fonts to test to page by
dragging them from folder in the computer. In the 3rd step the user will select
desired test level and in the 4th step user will receive the results.

Immediately after testing this first sketch, I’ve realized that step 2 and step 3 can
be merged into one by letting the user select which level of check is desired by
dropping the fonts on one of the 4 buttons in the page 3. This makes the process
faster and eliminates one reading and clicking action of the user.

The 4th step is presentation of the results to the user. My first wireframe was
consisting of 3 main parts. First is the font menu, where user can select and
click any font to change the results to show results of the corresponding font or
user can select family testing and the family section will be shown. Next part is
the selection of what routine will be shown in the window frame. There are all
of the 7 routines with 8th being the overview of all the errors and warnings. The
menu was initially placed on top of the window not to interfere with the con-
tent. Lastly most of the window is taken by presentation of the results. In first
wireframe it took shape a one long single page with sub headlines to divide the
routines from each other.

Later in the process I’ve added colors to the design and more detailed wireframe
of the results page. I’ve decided to start with these 5 basic colors:

■■■■■
#111111

(background)
#EEEEEE

(text)
#40E0D0

(highlight)
#FF00FF

(error)
#FFFF00

(warning)

The idea behind this color scheme is CGA monitors palette. This color scheme
should represent the precision and power of the console programs. Background
and text color are having big contrast to make text as much legible as possible.
Highlight color is for headlines, selection or graphs. With error color it will
highlight wrong values and error text and the same goes for yellow and warn-
ings. This color scheme is now used in dark mode of the web application.

Color palette of the first designs

43

This more detailed wireframe shows first draft of design of the results page in
color. First in the results is the display of meta data read from the name table.
This part is divided into two parts where the left part allows the user to select
one table and display its contents on the right side. There are error messages and
error count shown there. Next routine shows charset fulfillment in bar charts
and possibility to copy the missing ones with one click of a button. The last rou-
tine is a display of glyph set and the indication of errors and warning the some
of the glyphs. In this version the routine menu moved to the bottom side. Still
quite underdeveloped part was the sidebar with list of fonts. There is no indica-
tion of which font is selected and no indication of how many errors and warn-
ings are there.

First sketch of results presented on one long page

44

In next iteration I’ve tried to move the bottom menu to the sidebar where there
was a bit of negative space that has no usage. This way the sidebar has to be
slightly wider and the font list too. The font list was still undeveloped, but this
moved initiated the idea of showing more information there.

These wireframes made it to testing in the local development instance of the
server. Here are two screenshots of such a rendering.

Second sketch of results presented on one long page

45

Here you can also see the design progress of in the font list where it shows the
number of errors and warnings. The background color of the font list was also
tested in this run. The dark rendition was chosen as less distracting and more
readable. The colored numbers on colored background were impossible to rec-
ognize or read at all. I’ve tried all the possible combinations of text and back-
ground colors, but none of them worked.

The position of the routine’s menu was tested and here I realized that having 8
routines together with 6 or more fonts in one column creates quite a big infor-
mation cluster which is hard to navigate in. The positive background helped
to distinguish the font list from the routine menu, but the overall strong color
brightness brought too much attention to place which does not require it.

The conclusion from this was to make the font list with dark background and to
keep the menu stick to the bottom of the page.

Third and fourth sketch of results presented on one long page

46

This rendering stayed for longer development time, and it was first presented as
a functional web page to few font engineers for testing. The result of the testing
was that the rendering was a bit overwhelming even for experienced font en-
gineers. I’ve also shown this to few type designers, and they got lost in all the
information. This rendering was also presented in the mid-term of my study on
this university and the review of my opponent mentioned that this needs to be
improved because this tool must be easy to use for non-experienced users too.

4.1.1. Tablet like routines

In response to these reviews I’ve came with different layout that would divide
the routines into separate pages. The main page would function as a signpost to
help user direct through the results. Here’s the first wireframe that also accom-
panies the statistics of the analysis.

This was followed with more detailed rendering:

First tablet sketch of the web application

47

Here there are icons for every routine and there are notification like numbers
in some corners of the routine buttons. The statistics were moved to the left top
part and this place finally found its content which goes well with the font list in
the bottom.

The overall page length of the first design was getting way too high. Wirefram-
ing shows quick structural solutions on small exemplar data, but when you
implement the solution and load a font with 1000 glyphs the page gets excessive-
ly long. The user may get lost and frustrated. The decision was taken to cut the
long page into 8 pieces and each subpage consists of results relevant only for the
one routine.

Here is detailed rendition of meta routine results:

More detailed tablet sketch of the web application

Sketch presenting results of Meta routine

48

You can see that in comparison to the one page design this page is focusing on
better data organization, removal of unnecessary and ambiguous entries. It
highlights the most important data and works better with negative space. This
page is more inviting to the user than the plain list of entries from the font ta-
ble.

Both changes were implemented to the code and resulted in this rendition:

This was again tested, and the response was much better than with the first
one-page design. From these testing users were delighted with the organization
of the information, but some of them commented on the dark mode like color
scheme. Some mentioned that is looks to console like and too geeky. I was resist-
ing the need for a long time, but for the usability’s sake I came with white color
scheme too.

First implementation of tablet view of the web application

49

■■■■■
#EEEEE

(background)
#111111
(text)

#6020FF
(highlight)

#FF00FF
(error)

#FFFF00
(warning)

The combination is not a pure negative to the dark scheme, but choses the violet
as a main highlight color. The choice is intentional as red and yellow is reserved
for errors and warnings, green is used in the dark scheme and blue and violet
was the only remaining possibilities. I’ve chosen violet. The result of using such
a color scheme is here:

Second color palette of fontanalyzer.app

50

This is the design I’ve made progress to in this moment. The webpage is rare-
ly in final form and the design will evolve in the future to accommodate new
functionality and results of new tests. The responses to current visual style and
usability are mostly positive and to quote one of the testers “it is pleasant to use”
was his immediate message.

4.1.2. Design of each routine subpage

For the all the charts rendering there is open-source library chart.js used.

Implementation of all the routines results of single font

51

4.1.3. Design of each family main page and each
family routine subpage

52

4.1.4. Design of homepage / upload page

The homepage was divided into 4 parts. Each view level got its own illustration18
and description to help user distinguish between them. Custom level has text
input field on top of the others for users to be able to insert their foundry name.
This name will be compared to stored foundries and if there is a match and cor-
responding routine, the user will have custom tests in the result page included.

4.2. FONT

Font analyzer font – RF Bullet – Light

Font analyzer font – RF Bullet – Regular

Font analyzer font – RF Bullet – Medium

Font analyzer font – RF Bullet – SemiBold

Font analyzer font – RF Bullet – Bold

18	 Author of the illustrations is my colleague Tereza Turková and I have all the rights to use
it.

Implementation of all the routines results of family testing

Implementation of the homepage

53

For the whole user interface of this application there is a font family RF-Bullet
deployed. The font is monospaced which makes many design aligning tasks easi-
er and gives user some kind of technical precision feel.

I’m the only designer of the whole font family and I have all the rights to use
this font in any application, any territory, any time and in any amount.

4.3. VISUAL STYLE

The result of this thesis is a working online-tool. It is a software with all the
needs software has. As a part of this thesis, I’ve also designed a logo and created
social media account where I will inform public about future version updates
and new tests being inserted. The account can be also used to inform broader au-
dience about basics of font engineering.

4.3.1. Logo

The idea behind this symbol is that F and A are the first letters on the applica-
tion name. The line there is like a scanning beam going through the symbol and
A is made of lines because the analyzer is beaming through the structure of the
letter.

4.3.2. Logotype

Vertical version

54

Horizontal version

4.3.3. Font

Font used is the same font used in the application.

4.3.4. Colors

Colors used are the same colors as in the application.

4.4. INSTAGRAM ACCOUNT

I’ve created an Instagram account with name @font.analyzer and here’s the de-
sign of first post. It’s consisting of 11 slides. This post is informing the audience
about the existence of the font analyzer application and it’s features.

55

There is also a 2nd post which is showing the audience the way it is meant to be
used:

WAIT FOR A
WHILE, BIG
FAMILIES
TEND TO
TAKE A LOT
OF TIME

...

NAVIGATE
THROUGH THE APP,
SWITCH FONTS,
DON’T FORGET TO
REVIEW FAMILY
TESTS

REVIEW
STATS, LOGS
TOTAL NUMBERS

SELECT FONTS
NAVIGATE TO
FAMILY SECTION

GO THROUGH ALL
SECTIONS TO GET
FULL OVERVIEW

11 screens of first font.analyzer post

56

I have a 3rd post proposal, which could educate the audience on basic topics:

LET’S MAKE
BETTER FONTS

GOOD PRACTICE

– Ideally every style in
a font family should
have unique WWS

– Very big families may
be divided for better
usability (unlike va-
riable fonts)

– Untraditional style
names are OK, if you
have correct WWS in
the export settings

GOOD PRACTICE

– Regular Italic is just
Italic, deal with it.
Regular is only used
in 400 – Regular
weight, in other style
names it is ommited

–

11 screens of second font.analyzer post

proposal of educational post

57

5. FONT QUALITY

Let’s define quality font in today’s terms according to the technical level of type
design and tools used to produce font files. In the broadest view we look on the
font from the design point of view and the technical point of view. I would like
to briefly describe both sides of the quality criteria here, but for the purpose of
this thesis only the technical criteria will be considered relevant. There may be
an algorithm or artificial intelligence instance to assess on the design quality of
a font. But to my knowledge there is none today and this work has no aims to do
so.

5.1. WHAT IS QUALITY?

The ISO definition for quality is “conformance to requirements- the totality of
features and characteristics of a product or service that bear on its ability to
satisfy stated or implied needs.” 19 , Philip B. Crosby has defined quality as “qual-
ity conforming to specifications.”, M. Juran has described quality as “quality is
fitness for use.” and Deming has described quality as “quality is customer satis-
faction.”

We can conclude from above that quality product conforms to some standards
and is usable in a way that user is satisfied. In font industry there is a well-main-
tained up-to-date standard described before – OpenType in current version
1.9.1. User expectations / satisfaction may be met by drawing design that meets
current design, technical and language knowledge. The usage satisfaction relies
heavily on intermediate software that renders the font on a layout. This can be
anything from simple text processor (TextEdit, Notepad, Word, OpenOffice, …)
to complex layout software (Adobe InDesign, Affinity Designer, Figma, Quark
Xpress, Scribus, …). The font is a software that is plugged in the layout engine
and the outlines or features are read from the file, interpreted and presented to
the user. It is true that many frustrations coming toward type or usage of type
goes on the account of these layout software, because the user experience or in-
terface is not evolving according to standards that are met in other applications
we use on daily basis. I do not want to discuss these issues here, so I will focus
on design and technical font criteria which can be met during the design or pro-
duction phase of the font or the font family.

5.2. CRITERIA TO FONT QUALITY

The font may be considered ‘quality font’ if:

 ▶ The design is consistent:

“A mark of a well-crafted typeface is its contouring: How straight are the
straight lines, how smooth is the flow of the curves? Secondly, similar charac-
ters should appear the same size and positioned uniformly in relation to the

19	 ISO 8402, 14:00-17:00. (n.d.). ISO 8402:1994. ISO. https://www.iso.org/standard/20115.html

58

font lines. Legibility is impaired when characters «dance». Furthermore, the
major descriptive elements in the typeface – such as the straight down-strokes,
bows and serifs – must present an overall harmonious picture.”20

 ▷ Uniform stroke weights (unless intentional contrast is part of the design).

 ▷ Harmony across glyph shapes (like curves and angles feeling cohesive,
stroke endings, serifs being alike).

 ▷ Diacritics are consistent, shapes are corresponding to local language con-
ventions and are positioned correctly.

 ▷ Outlines are meeting height alignment zones that are defined for lowercase,
uppercase, ascender, descender and all other kinds of glyphs (may or may
not be figures, smallcaps, sub/supscript) in the font (unless intentional dif-
ference in height is part of the design)

 ▷ Outlines are kink-free. Kink is unintentional break in smoothness of two
bézier curves connection (unless intentional curve roughness is part of the
design).

 ▶ The font is legible/readable (not considering screen rendering):

“The primary purpose of a typeface is to transfer information. To attain this goal,
it must be legible, i.e. the recipient of the information should be able to decode it
with as little effort as possible and reassess the symbols to objects and processes
they represent.”21

 ▷ Well-proportioned letter shapes

 ▷ Use of negative space (in and out) is even

 ▷ Forms are not only recognizable, but also effortlessly read without breaking
the flow.

 ▶ The font is well spaced and kerned through the character set and properly
vertically aligned

“A well-crafted typeface demands good spacing. A state-of-the-art typeface fea-
tures both traditional spacing (based on total character width) as well as kerning
tables, providing correction values for individual character pairs. Where possi-
ble, there should exist «kissing» tables for extreme kerning. Good spacing creates
text which flows smoothly and rhythmically, enhancing overall legibility.”22

 ▷ Proper side-bearings (the space around each character).

 ▷ Monospaced fonts are having all glyphs same width (or multiples of base
width)

 ▷ Comprehensive kerning classes and pairs. Kerning pair values are consis-
tent and effective in maintaining even distribution of whitespace.

 ▷ Vertical alignment (setting of vertical metrics) of a font file makes the text

20	 Karow, P. (2012). Font Technology. Springer Science & Business Media.

21	 Karow, P. (2012). Font Technology. Springer Science & Business Media.

22	 Karow, P. (2012). Font Technology. Springer Science & Business Media.

59

centered in a line, the design is taking adequate portion of the UPM and the
line spacing is appropriate to the position of caps, diacritics, ascenders and
descenders.

 ▶ Promoted character sets are completed and correctly encoded

 ▷ Essential character sets (A–Z, a–z, 0–9, punctuation).

 ▷ All supported languages should be complete (accents, diacritics, special
symbols), includes “comb” glyphs to enable composition of accented glyphs
without Unicode (needed for some scripts/languages)

 ▷ Proper Unicode mappings (correct codepoints assigned for all glyphs)

 ▷ All glyphs are accessible via Unicode or OpeType feature

 ▶ The font meets current rendering standards

 ▷ If intended to be used on screen the font includes instructions for raster-
izers to display the font crisply ensuring smooth consistent curves and
non-jagged lines on both high-res and low-res displays.

 ▶ Font family is functional

 ▷ Structure of the font family is clear and the style naming is according to
standards.

 ▷ Design axes of the font family are defined and clearly translated to names
commonly understood by designers .

 ▷ Font family is installable and all styles are visible to operating system or
layout software.

 ▷ If style-linking (having Regular-Bold or Upright-Italic styles) is applicable it
is well set up and functional in layout software.

It’s important to note that this list may evolve over time due to technological
advancements and changing user expectations. What we are expecting from
a typeface today may not be considered important or possible some time ago.
There are prevalent qualities like the consistency of design or proper usage of
negative space. So are here qualities that evolves like character encodings or
screen renderings. What we consider low-resolution display may be in few years
viewed like ‘prehistoric’ due to some big technology leap.

5.3. ERRORS, WARNINGS AND INFORMATION MESSAGES

This application is going to run tests on many mentioned qualities or standard
compliance and the test results need to be presented to user. The structure of
that response must give the user clear message if there is a required following
action or not. For this purpose, I will use commonly known principle of errors,
warnings and informational messages.

 ▶ Error refers to a deviation or non-conformance of the software from specified
requirements or guidelines. It also can cause the user to not be able to use or
install the software at all. These messages require user response.

60

 ▶ Warning is an exception condition that might not be an error but could cause
problems if not addressed. These messages may require user to response.

 ▶ Information messages provide feedback about an event in the software that is
noteworthy but doesn’t require user to take any action.

5.4. CHECK LIST

ROUTINE DESCRIPTION RESULT STATE

META Name table – if Mac table
entries are present than Mac
entries = Win entries

ERROR NOT DONE

META Name table – entry length (copy-
right<500, description<200, ID1,
ID2, ID4, ID16, ID17 < 64, ID6 < 29,
ID18 < 32)

ERROR DONE

META Name table – entry length (NID4<31) WARNING DONE

META Name table – NID6 must contain no
white spaces

ERROR DONE

META Name table – NID4 = NID1 + NID 2
(no Regular)

ERROR DONE

META Name table – NID2 can only be one
of these four: Regular, Italic, Bold,
Bold Italic

ERROR DONE

META Name table – NID 4 should start with
family name

ERROR DONE

META Name table – Make sure family
(NID1, NID16) name does not begin
with a digit.

ERROR NOT DONE

META Style linking – macStyle, NID2 and
fsSelection values are consistent

ERROR DONE

META italic angle – macStyle, NID2, fsSe-
lection and italicAngle values are
consistent

WARNING NOT DONE

META Name table – NID1, NID16 must not
contain ‘Italic’

ERROR DONE

META Name table – One family name per
family

ERROR NOT DONE

META Name table – match the names the
proper weight classes

WARNING NOT DONE

META Name table – match the names the
proper width class

WARNING NOT DONE

META OS/2 table – Use Typo Metrics bit is
set in fsSelection

WARNING DONE

META Version string is the same across
meta

ERROR NOT DONE

META usWinAscent and usWinDescent
matches Ymax and Ymin

ERROR DONE

META XavgCharWidth has correct value ERROR NOT DONE

61

META Check if monospaced font has all
glyphs width = avgcharwidth; post.
isFixedPitch != 0; kerning is empty

ERROR NOT DONE

META font should have these tables: cmap,
head, hhea, hmtx, maxp, name, OS/2,
post

ERROR NOT DONE

META head table – fontrevision WARNING NOT DONE

META head table – UPM <1-16k> ERROR NOT DONE

META head table – BoundingBox (Xmin,
Xmax, Ymin, Ymax)

ERROR NOT DONE

META hhea table – advanceWidthMax ERROR NOT DONE

META hhea table – minLeftSideBearing ERROR NOT DONE

META hhea table – minRightSideBearing ERROR NOT DONE

META hhea table – caretSlopeRun WARNING NOT DONE

META hhea table – caretSlopeRise WARNING NOT DONE

META hhea table – xMaxExtent ERROR NOT DONE

META hhea table – numberOfHMetrics ERROR NOT DONE

META Maxp (numGlyphs) = no Glyphs =
htmx entries

ERROR NOT DONE

META usWeightClass is <1-1000> ERROR NOT DONE

META usFirstCharIndex, usLastCharIndex ERROR NOT DONE

META Code Pages ranges WARNING NOT DONE

META sxHeight – check with x v z y WARNING NOT DONE

META capHeight – check with H WARNING NOT DONE

META GDEF Check mark characters are in
GDEF mark glyph class

ERROR NOT DONE

META Check GDEF mark glyph class
doesn’t have characters that are not
marks.

ERROR NOT DONE

META Check glyphs in mark glyph class are
non-spacing.

ERROR NOT DONE

META MaxAdvanceWidth is aligned with
HMTX table values

ERROR NOT DONE

CHARSET charset – encoding list INFORMATION DONE

CHARSET charset – language list INFORMATION DONE

CHARSET charset – encoding list* ERROR NOT DONE

CHARSET glyph order – first four glyphs ERROR NOT DONE

CHARSET custom glyph order* ERROR NOT DONE

CHARSET check if duplicates are the same
(Delta – increment, mu – micro, Pi –
product)

WARNING NOT DONE

CHARSET check if space, CR and nonbreaking
space is the same

ERROR DONE

CHARSET check if hyphen, nonbreakinghy-
phen are the same

ERROR DONE

CHARSET Glyphs that are either accessibly via
Unicode or feature

WARNING NOT DONE

62

CHARSET Stylistic sets have friendly names WARNING NOT DONE

CHARSET if empty glyphs have no outlines ERROR NOT DONE

CHARSET If glyphs are present out of the pri-
vate Unicode area

ERROR DONE

CHARSET If comb accents exist, then legacy
must too

ERROR NOT DONE

CHARSET if uppercase exist, check if lowercase
exist too and vice versa

WARNING NOT DONE

CHARSET	 all tabular glyphs have same width ERROR NOT DONE

GLYPH leftmost point is in extreme WARNING DONE

GLYPH close to straight line WARNING DONE

GLYPH kinks WARNING DONE

GLYPH overshoot consistency WARNING NOT DONE

GLYPH close to zone WARNING NOT DONE

GLYPH Base glyph component is first WARNING NOT DONE

GLYPH rotated and scaled components WARNING DONE

METRICS Show metric values of single font file INFORMATION DONE

METRICS test metrics of glyphs having the
same design

WARNING DONE

METRICS Show vertical metrics values and in
design

INFORMATION DONE

METRICS vertical metrics should be the same
hhea = typo

WARNING DONE

METRICS useTypoMetrics flag is set WARNING DONE

KERNING Show kerning pairs of single font file INFORMATION DONE

KERNING kerning – exists* ERROR DONE

KERNING kerning – positive/negative* ERROR DONE DONE

KERNING kerning – same value* ERROR

OT FEATURES Make all features available to test INFORMATION DONE

OT FEATURES Test if in a stylistic set feature there
is not only base glyph, but all accent-
ed glyphs too

WARNING NOT DONE

FAMILY TESTS

META weight class – one WWS in family
(NID1)

ERROR DONE

META style linking – R, I, B, BI only once in
style-linking family (NID1)

ERROR DONE

META NID 6 is unique in family (whole
font family)

ERROR NOT DONE

META Underline thickness and position
are the same

WARNING NOT DONE

63

META Strikeout position and size are the
same

WARNING NOT DONE

META Monospaced char width is the same
in whole family

ERROR NOT DONE

META Same values for Copyright, Version,
Trademark, ...

ERROR NOT DONE

CHARSET Same charset for the whole family WARNING DONE

GLYPH all styles has the same amount of
outlines and components

WARNING DONE

METRICS Same Vertical metrics for the whole
family

ERROR DONE

METRICS Compare metrics of font files in the
family

WARNING DONE

KERNING Read kerning pairs of the whole font
family

INFO DONE

KERNING Filter 0 in kerning INFO NOT DONE

OT FEATURES Same features for whole family WARNING DONE

Entries marked with * are for custom check only.

65

6. IMPLEMENTATION

In this section I would like to present the current implementation of the whole
application. The application is running on virtual Unix server, and this comes
with some more settings than usual web presentation. For the purpose of this
work I’m going to describe this part in a simplified manner as the goal of this
text is not to precisely give step by step guide how it is done or to document ev-
ery line of the code.

6.1. LOCAL DEVELOPMENT

To begin with such an application, one needs to install proper development
environment which is offline and unconnected to the production server. The
development server is a server where every application update is written and
tested. It must be independent to the production server so nothing can go wrong
with what is deployed to the public. There is possibility to install Django on all 3
major operating system – Windows, MacOS, Linux (Unix). For local development
on computer, I went with my own computer running native operating system
MacOS. There are few recommended steps:

 ▶ Install HomeBrew, Python3, Virtual Environment
 ▶ Create new virtual environment just for Django
 ▶ Install Django
 ▶ Install fonttools, xmltodict
 ▶ Create new Django project
 ▶ Run python manage.py runserver
 ▶ Work on 127.0.0.1:8000

6.2. PRODUCTION SERVER

Setting up virtual server is more complicated because there is a configuration of
other communication layers needed to be able to get user requests from outside
all the way to the python application.

The simplified procedure of setting up such a server:

 ▶ Update server software
 ▶ Install HomeBrew, Python3, Virtual Environment
 ▶ Create new virtual environment just for Django
 ▶ Install Django
 ▶ Install fonttools, xmltodict
 ▶ Create new Django project

simplified diagram of a structure of a web server serving Django application

66

 ▶ Setup Django settings (ALLOWED_HOSTS, DEBUG, SECRET_KEY)
 ▶ Manage static and media files
 ▶ Database configuration
 ▶ Run python manage.py runserver and test it
 ▶ Install and setup Gunicorn
 ▶ Setup Nginx
 ▶ Setup HTTPS and get SSL Certificate
 ▶ Firewall setup

For this project I’ve obtained “fontanalyzer.app” domain and Ubuntu virtual
server v22.04. In the time of this writing the server is up and running the latest
code.

6.3. READING AND TESTING FONTS

The logic of the whole analysis was described in section 3.5 and here I would like
to focus on techniques used for each testing. As mentioned before not all the
tests are done. I’ve focused on completing main tests for each routine (including
family) and to showcase maximum variability to the users.

Reading data from the font file is important part of the process where the data
are structured to internal dictionary including ID of every data to be tested.
Here’s a list of function that takes care of that process:

readNameTable(inputFont, id)
readCommonTable(inputFont, tableName, id)
readCmapTable(inputFont)
readCmapTableInverse(inputFont)
readGlyphSet(parsedFont, inputFont, id)
readGlyphs(parsedFont, inputFont, id)
readMetrics(parsedFont, inputFont, id)
readKerningPairs(inputFont, id)
readFeatures(inputFont, id)

These are run for every uploaded font. Further testing functions for the analysis
are requested from the database and run one after each other. Here’s a list with
brief explanation what every function does and how it fits in the checking list:

checkNameTableLengths (font, params)
checkNameTableContains (font, params)
checkNameTableEquals (font, params)

These three take care about most of the meta testing of the name table. It’s either
simple comparison of a length of a field to specified length, string comparison if
a field contains specified string (or does not contain) or another string compari-
son if a filed is exactly matching specified string in the parameter. In this func-
tion the results are distinguished by the view level.

checkStyleLinking (font, params)

This function is taking care of testing style linking while looking into name
(NID1, NID2, NID16, NID17), head (macStyle) and OS/2(fsSelection) tables. The
setting of the bits and the naming must be aligned. In this function the results
are distinguished by the view level.

67

checkVerticalMetrics (font, params)

This function checks if vertical metrics are aligned in the font and if there is
not a node that would exceed the win values. Also the useTypoMetrics bit in
fsSelection should be set. This information is shown only to view level 2 and 3.

checkCharsetAgainstList(font, params)

This function is checking the character set of a font with predefined charac-
ter set. The predefined character set is stored in XML on the server disc. This
function takes care of all the charset and language tests. The result is informa-
tion only and it is accessible to all levels of view.

checkPrivateUnicodeRange(font, params)

This function tests if there is a glyph within private Unicode area
(E000-F000). Raise an error. This information is shown only to view level 2
and 3.

checkUnevenLines(font, params)

This function checks all the curves for unevenness. If the font is inclined (ital-
ic, slanted) it tries to compute angle of the line and compares it to the italic
angle defined in post table. The angle which is considered as close to straight
is by default from 0.8 degree to 5 degrees. If the line is very short the upper
limit is double or even quadruple of the default. (It’s very easy to get angle dif-
ference with thin styles on a short line, because of the low granularity of the
grid). This function gives all the view levels the same information.

checkKinks(font, params)

This function checks for unintentional breaks in curve smoothness. The kink
is considered to be present when the angle of two consequent handles is
differing more than 0.5 degrees to 15 degrees. If one of the handles is 7 times
longer than the other, the kink is very likely to be present (cannot be easily
avoided because of the low granularity of the grid) and therefore it is ignored.
This function gives all the view levels the same information.

checkLeftmostExtreme(font, params)

This function is checking if the leftmost node is oncurve (node, not handle).
This function gives all the view levels the same information.

checkComponentRotationScale(font, params)

This function is checking if one or more components are not rotated or scaled.
It may not cause a trouble during rendering, but if any hinting is applied to
the base glyph, the transformation on it is not applied. For example, delta
instruction of moving a point up will be the same in mirrored glyph and thus
also moving up and causing rendering problem. This is all just prevention of a
future problems, and it is flagged as warning. This function gives all the view
levels the same information.

checkMetrics (font, params)

This function tests metrics of a glyph against predefined sign, value or refer-
ence. The predefined sign can be either negative or positive, value can be any

68

integer value and reference can be any name or Unicode. This information is
shown only to view level 2 and 3.

checkKerningPairsExist(font, params)
checkKerningPairsPolarity(font, params)

These two functions are checking kerning pairs for existence or polarity (nega-
tive/positive). Kerning pairs are defined as pair of Unicodes. These functions can
be run only in custom view level 2 or 3.

checkOTFeatures(font, params)

This function check whether the specified OpenType feature is present. The
name of the feature is defined as 4 letter string. This function can be run only in
custom view level 2 or 3.

checkFamilyWeightClasses(fonts, params)

This function is checking if there are two fonts with the same WWS and at the
same time not having fsSelection flag Regular set. This translates to raising an
error if there would be two Italic, Bold or Bold Italic fonts in style linking fami-
ly. This function gives all the view levels the same information.

checkFamilyLanguages(fonts, params)

This function checks if there is the same language support in the family. This
function gives all the view levels the same information.

checkGlyphsConsistency(fonts, params)

This function checks if name corresponding glyphs have the same number of
paths and contours. This function gives all the view levels the same information.

checkFamilyVerticalMetrics(fonts, params)

This function checks if vertical metrics are the same through the whole font
family. This information is shown only to view level 2 and 3.

checkFamilyHorizontalMetrics(fonts, params)

This function computes average delta of metrics from one to another style and if
there is a bigger deviation (5 times) from that the metrics are flagged suspicious.
This information is shown only to view level 2 and 3.

checkFamilyOTFeatures(fonts, params)

This function checks if there are the same OT features in the family. This func-
tion gives all the view levels the same information.

The results are than saved back to database.

Right after this phase the presentation data are prepared, errors and warning
counts are computed, and everything is sent to the template corresponding to
the view level.

69

6.4. LOGGING

In order to inform user about all the tests that were run on uploaded fonts log-
ging was recently added to the analysis. The log is a simple text filed where the
application can note what is done during the process of testing. This text output
is than connected to the left upper information box called summary. Clicking on
any of the first three values takes the user to the page where the log is displayed.

The log also allows me as a developer to note the precise time of any action taken
during the testing and thus improve performance. This will be briefly discussed
in next chapter

6.5. SPEED

The speed of server-side processes must be tracked, and each function must be
evaluated to find most time demanding computations. With rising number of
tests, the total time will be rising, and it may degrade the user experience of the
app.

During the development I took some measures to make the process more fast-
er by moving call for one function in many tests to initial reading phase. The
results of the function were saved to dictionary and then simply read by in these
functions. At this point it seems that the most time-demanding function is read-
ing cmap table which takes nearly 1 second.

Also to make user experience a bit better (less unexpected) I’ve added waiting
message after the upload and before the presentation starts to render. It does not
improve any time measures, just prepares the user to wait maybe a bit longer.

Current version takes around 30 seconds to test 6 fonts family.

70

7. CONCLUSION

This thesis examines very specific field of font engineering and gives better
perspective on the challenges and tasks the font engineer must undergo to
produce quality font. Through broad research of literature, public questionnaire
answered by professionals and 10 years of personal experience the thesis could
state what the current definition of quality font is.

Based on the definition and modern software possibilities whole new applica-
tion on font quality assurance was designed, programmed and deployed on real
functional server. The application goals were met.

Font analyzer is running on any up to date desktop machine running any oper-
ating system. It is possible to insert opentype fonts exported from any current
font development software. The application is based on Django – existing frame-
work, which made the development much easier and straightforward. The appli-
cation is easy to expand with tests, tests definitions or new functionality gained
from the underlying font tools library. The application is free too use and it will
stay free. The application is able to test multiple fonts in one run and also to pro-
vide font family testing, which test all the fonts as a family. The application was
designed with common usability principles taken into account and tested by
real users. The conclusions from testing were taken into account and the design
was improved. During the development all kinds of existing fonts were tested as
an input – students fonts, type designers fonts and even font of large font pro-
duction houses. In every step of the development of this application the were
other font engineers and type designers involved. In the very beginning the
conducted questionnaire gave my important insight how other work, but also
the reflection of other user behavior during design testing was important to me.
Few engineers also gave me ideas to implement new tests that otherwise would
stay only in their wishes.

The development of the application is not done. This thesis is a valuable first
step to build software that could serve as a useful basepoint to many beginners,
type designers or font engineers. This thesis also could serve as a starting point
to write better documentation to quality assurance process in the font industry
and to revisit and discuss what we are actually doing and how to improve it.

The future for this application lays mainly in programming the rest of the tests
from the check list and to broaden the testing to new emergning variable and
color fonts. Improve speed and effectivity of computations and build compre-
hensive documentation to these tests. In longer run fonts from around the
world could be brought in and the testing and usability can be adjusted to differ-
ent scripts and writing systems. In broader view this application can serve not
only individuals, but also to schools, workshops and type foundries.

71

8. APPENDIX

8.1. ABBREVIATIONS

 ▶ ANSI = American National Standards Institute
 ▶ CGA = Color Graphics Adapter
 ▶ FE = Font Engineer
 ▶ HOI = Higher Order Interpolation
 ▶ HTML = Hyper Text Markup Language
 ▶ HTTP = Hyper Text Transfer Protocol
 ▶ HTTPS = use of HTTP over SSL/TLS
 ▶ IP = Internet Protocol
 ▶ ISO = International Standard Organization
 ▶ NDA = Non-Disclosure Agreement
 ▶ NID = Name Table ID
 ▶ OS = Operating System
 ▶ OT Feature = OpenType Feature
 ▶ OTF = OpenType Font
 ▶ PPEM = Pixel Per EM
 ▶ QA = Quality Assurance
 ▶ SSL = Secure Sockets Layer
 ▶ SVG = Scalable Vector Graphics
 ▶ SW = SoftWare
 ▶ TD = Type Designer
 ▶ TTF = TrueType Font
 ▶ UPM = Units Per EM
 ▶ URL = Uniform Resource Locator
 ▶ UX = User Experience
 ▶ WWS = Weight, Width, Style
 ▶ XML = eXtensible Markup Language

8.2. BIBLIOGRAPHY

 ▶ Karow, P. (2012). Font Technology: Methods and Tools (Softcover reprint of
the original 1st ed. 1994 ed.). Springer.

 ▶ Brinck, T., Gergle, D., & Wood, S. D. (2002). Designing Web sites that work :
usability for the Web. Morgan Kaufmann Publishers.

 ▶ Website Usability: The Ultimate Guide for 2024. (n.d.). Survicate.com. https://
survicate.com/blog/website-usability/

 ▶ Interaction Design Foundation. (2016, September 25). What is Wireframing?
The Interaction Design Foundation; Interaction Design Foundation. https://
www.interaction-design.org/literature/topics/wireframe

 ▶ Frontend and backend. (2021, December 20). Wikipedia. https://en.wikipedia.
org/wiki/Frontend_and_backend

72

 ▶ Font Names Table – TrueType Reference Manual – Apple Developer. (2020).
Apple.com. https://developer.apple.com/fonts/TrueType-Reference-Manual/
RM06/Chap6name.html

 ▶ Horizontal Header Table – TrueType Reference Manual – Apple Develop-
er. (2025). Apple.com. https://developer.apple.com/fonts/TrueType-Refer-
ence-Manual/RM06/Chap6hhea.html

 ▶ Font Header Table – TrueType Reference Manual – Apple Developer. (2025).
Apple.com. https://developer.apple.com/fonts/TrueType-Reference-Manual/
RM06/Chap6head.html

 ▶ OS/2 Compatibility Table – TrueType Reference Manual – Apple Develop-
er. (2025). Apple.com. https://developer.apple.com/fonts/TrueType-Refer-
ence-Manual/RM06/Chap6OS2.html

 ▶ Glyph Name and PostScript Font Table – TrueType Reference Manual – Ap-
ple Developer. (2025). Apple.com. https://developer.apple.com/fonts/True-
Type-Reference-Manual/RM06/Chap6post.html

 ▶ ISO 8402, 14:00-17:00. (n.d.). ISO 8402:1994. ISO. https://www.iso.org/stan-
dard/20115.html

	1. Introduction
	1.1. Current state
	1.2. Goals
	1.2.1. Primary objectives
	1.2.2. Methods

	2. Preliminaries
	2.1. Research
	2.1.1. Books

	2.2. Questionnaire
	2.2.1. Contents
	2.2.2. Results

	3. Application
	3.1. Requirements
	3.2. Internal structure
	3.3. File Structure
	3.4. Database Structure
	3.5. Analysis
	3.5.1. Creation of analysis
	3.5.2. Phases (Routines)
	3.5.2.1. Meta
	3.5.2.2. Charset
	3.5.2.3. Languages
	3.5.2.4. Glyphs
	3.5.2.5. Metrics
	3.5.2.6. Kerning
	3.5.2.7. OT Features
	3.5.2.8. Family testing

	3.5.3. Results
	3.5.3.1. Assigning errors and warnings to font data
	3.5.3.2. Structure of the result data

	4. Design
	4.1. One endless page
	4.1.1. Tablet like routines
	4.1.2. Design of each routine subpage
	4.1.3. Design of each family main page and each family routine subpage
	4.1.4. Design of homepage / upload page

	4.2. Font
	4.3. Visual style
	4.4. Logo
	4.4.1. Logotype
	4.4.2. Font
	4.4.3. Colors

	4.5. Instagram account

	5. Font Quality
	5.1. What is quality?
	5.2. Criteria to font quality
	5.3. Errors and warnings and information messages
	5.4. Check list

	6. Implementation
	6.1. Local development
	6.2. Production Server
	6.3. Reading and Testing FONTS
	6.4. Logging
	6.5. Speed

	7. Conclusion
	8. Appendix
	8.1. Abbreviations
	8.2. Bibliography

